Neurostimulation for treatment of post-stroke impairments

Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).Article 
PubMed 

Google Scholar 
Pinho, J., Costa, A. S., Araújo, J. M., Amorim, J. M. & Ferreira, C. Intracerebral hemorrhage outcome: a comprehensive update. J. Neurol. Sci. 398, 54–66 (2019).Article 
PubMed 

Google Scholar 
The National Institute for Health and Care Excellence. Stroke Rehabilitation in Adults. NICE Guideline NG236 https://www.nice.org.uk/guidance/ng236 (2023).Dawson, J. et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 397, 1545–1553 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bornstein, N. M. et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): an international, randomised, double-blind, sham-controlled, pivotal trial. Lancet 394, 219–229 (2019).Article 
CAS 
PubMed 

Google Scholar 
Levi, H. et al. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model. PLoS One 7, e39636 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seylaz, J. et al. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J. Cereb. Blood Flow. Metab. 8, 875–878 (1988).Article 
CAS 
PubMed 

Google Scholar 
Jackson, A. & Zimmermann, J. B. Neural interfaces for the brain and spinal cord — restoring motor function. Nat. Rev. Neurol. 8, 690–699 (2012).Article 
CAS 
PubMed 

Google Scholar 
Denison, T. & Morrell, M. J. Neuromodulation in 2035: the neurology future forecasting series. Neurology 98, 65–72 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Biasiucci, A. et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 2421 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wade, D. T., Langton-Hewer, R., Wood, V. A., Skilbeck, C. E. & Ismail, H. M. The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46, 521–524 (1983).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baker, K. B. et al. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. Nat. Med. 29, 2366–2374 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ward, N. S. Restoring brain function after stroke — bridging the gap between animals and humans. Nat. Rev. Neurol. 13, 244–255 (2017).Article 
PubMed 

Google Scholar 
Townsley, R. B. & Hilmi, O. J. The use of nerve monitoring in the placement of vagal nerve stimulators. Clin. Otolaryngol. 42, 959–961 (2017).Article 
CAS 
PubMed 

Google Scholar 
U.S. Food and Drug Administration. FDA News Release: FDA Approves First-of-Its-Kind Stroke Rehabilitation System https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-stroke-rehabilitation-system (2021).Hulsey, D. R. et al. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30 (2017).Article 
PubMed 

Google Scholar 
Manta, S., Dong, J., Debonnel, G. & Blier, P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34, 272–280 (2009).PubMed 
PubMed Central 

Google Scholar 
Engineer, N. D. et al. Reversing pathological neural activity using targeted plasticity. Nature 470, 101–104 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Khodaparast, N. et al. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol. Dis. 60, 80–88 (2013).Article 
CAS 
PubMed 

Google Scholar 
Khodaparast, N. et al. Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil. Neural Repair 30, 676–684 (2016).Article 
PubMed 

Google Scholar 
Hays, S. A. et al. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging 43, 111–118 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Hays, S. A. et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45, 3097–3100 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Meyers, E. C. et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49, 710–717 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bowles, S. et al. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron https://doi.org/10.1016/j.neuron.2022.06.017 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Dawson, J. et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47, 143–150 (2016).Article 
PubMed 

Google Scholar 
Kimberley, T. J. et al. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke 49, 2789–2792 (2018).Article 
PubMed 

Google Scholar 
Dawson, J. et al. Vagus nerve stimulation paired with upper-limb rehabilitation after stroke: one-year follow-up. Neurorehabil. Neural Repair 34, 609–615 (2020).Article 
PubMed 

Google Scholar 
Francisco, G. E. et al. Vagus nerve stimulation paired with upper-limb rehabilitation after stroke: 2- and 3-year follow-up from the pilot study. Arch. Phys. Med. Rehabil. 104, 1180–1187 (2023).Article 
PubMed 

Google Scholar 
Dawson, J. et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor impairment and function after chronic ischemic stroke: subgroup analysis of the randomized, blinded, pivotal, VNS-REHAB device trial. Neurorehabil. Neural Repair 37, 367–373 (2023).Article 
PubMed 

Google Scholar 
Kimberley, T. J. et al. Abstract 150: Vagus nerve stimulation (VNS) paired with upper extremity rehabilitation in chronic stroke: improvements in wrist and hand impairment and function. Stroke 54, A150 (2023).Article 

Google Scholar 
Kilgard, M. P., Rennaker, R. L., Alexander, J. & Dawson, J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation 42, 159–165 (2018).Article 
PubMed 

Google Scholar 
Kimberley, T. J. et al. Vagus nerve stimulation paired with mobility training in chronic ischemic stroke: a case report. Phys. Ther. 103, pzad097 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04534556 (2020).Martino, R. et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 36, 2756–2763 (2005).Article 
PubMed 

Google Scholar 
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci. 1, 64–68 (1998).Article 
CAS 
PubMed 

Google Scholar 
Hamdy, S. et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology 115, 1104–1112 (1998).Article 
CAS 
PubMed 

Google Scholar 
Fraser, C. et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 34, 831–840 (2002).Article 
CAS 
PubMed 

Google Scholar 
Fraser, C. et al. Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G137–144 (2003).Article 
CAS 
PubMed 

Google Scholar 
Teismann, I. K. et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 8, 62 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
The National Institute for Health and Care Excellence (NICE). Pharyngeal Electrical Stimulation for Neurogenic Dysphagia. Interventional Procedures Guidance [IPG781]. https://www.nice.org.uk/guidance/ipg781 (2024).Jayasekeran, V. et al. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology 138, 1737–1746.e32 (2010).Article 
PubMed 

Google Scholar 
Vasant, D. H. et al. Pharyngeal electrical stimulation in dysphagia poststroke: a prospective, randomized single-blinded interventional study. Neurorehabil. Neural Repair 30, 866–875 (2016).Article 
PubMed 

Google Scholar 
Scutt, P., Lee, H. S., Hamdy, S. & Bath, P. M. Pharyngeal electrical stimulation for treatment of poststroke dysphagia: individual patient data meta-analysis of randomised controlled trials. Stroke Res. Treat. 2015, 429053 (2015).PubMed 
PubMed Central 

Google Scholar 
Bath, P. M. et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke. Stroke 47, 1562–1570 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Suntrup, S. et al. Electrical pharyngeal stimulation for dysphagia treatment in tracheotomized stroke patients: a randomized controlled trial. Intensive Care Med. 41, 1629–1637 (2015).Article 
CAS 
PubMed 

Google Scholar 
Dziewas, R. et al. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurol. 17, 849–859 (2018).Article 
PubMed 

Google Scholar 
Dennis, M. Pharyngeal stimulation after stroke: more evidence is needed. Lancet Neurol. 17, 830–831 (2018).Article 
PubMed 

Google Scholar 
Bath, P. Electrical stimulation of the throat for swallowing difficulties after stroke. ISRCTN https://doi.org/10.1186/ISRCTN98886991 (2022).Article 

Google Scholar 
Baig, S. S. et al. Transcutaneous auricular vagus nerve stimulation with upper limb repetitive task practice may improve sensory recovery in chronic stroke. J. Stroke Cerebrovasc. Dis. 28, 104348 (2019).Article 
PubMed 

Google Scholar 
Badran, B. W. et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11, 492–500 (2018).Article 
PubMed 

Google Scholar 
de Melo, P. S. et al. Understanding the neuroplastic effects of auricular vagus nerve stimulation in animal models of stroke: a systematic review and meta-analysis. Neurorehabil. Neural Repair 37, 564–576 (2023).Article 
PubMed 

Google Scholar 
Redgrave, J. N. et al. Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J. Stroke Cerebrovasc. Dis. 27, 1998–2005 (2018).Article 
PubMed 

Google Scholar 
Wu, D. et al. Effect and safety of transcutaneous auricular vagus nerve stimulation on recovery of upper limb motor function in subacute ischemic stroke patients: a randomized pilot study. Neural Plast. 2020, 8841752 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Capone, F. et al. Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast. 2017, 7876507 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, J. N. et al. Efficacy and safety of transcutaneous auricular vagus nerve stimulation combined with conventional rehabilitation training in acute stroke patients: a randomized controlled trial conducted for 1 year involving 60 patients. Neural Regen. Res. 17, 1809–1813 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Chang, J. L. et al. Transcutaneous auricular vagus nerve stimulation (tAVNS) delivered during upper limb interactive robotic training demonstrates novel antagonist control for reaching movements following stroke. Front. Neurosci. 15, 767302 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Subrahmanyamc, S. Effectiveness of transcutaneous electrical stimulation of vagus nerve among post stroke urinary incontinence. Eur. J. Mol. Clin. Med. 7, 3895–3913 (2020).
Google Scholar 
Wang, Y. et al. Effect of transcutaneous auricular vagus nerve stimulation on post-stroke dysphagia. J. Neurol. 270, 995–1003 (2023).Article 
PubMed 

Google Scholar 
Arsava, E. M. et al. Assessment of safety and feasibility of non-invasive vagus nerve stimulation for treatment of acute stroke. Brain Stimul. 15, 1467–1474 (2022).Article 
PubMed 

Google Scholar 
Fitzgerald, P. B., Fountain, S. & Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 117, 2584–2596 (2006).Article 
PubMed 

Google Scholar 
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133, 425–430 (2000).Article 
CAS 
PubMed 

Google Scholar 
Krogh, S., Jønsson, A. B., Aagaard, P. & Kasch, H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: a systematic review and meta-analysis of randomized sham-controlled trials. J. Rehabil. Med. 54, jrm00256 (2022).Article 
PubMed 

Google Scholar 
Li, L. et al. Systematic review and network meta-analysis of noninvasive brain stimulation on dysphagia after stroke. Neural Plast. 2021, 3831472 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Arheix-Parras, S. et al. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: leads for future studies. Neurosci. Biobehav. Rev. 127, 212–241 (2021).Article 
PubMed 

Google Scholar 
Liampas, A. et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv. Ther. 37, 3278–3291 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, M., Bao, G., Bai, L. & Yu, E. The role of repetitive transcranial magnetic stimulation in the treatment of cognitive impairment in stroke patients: a systematic review and meta-analysis. Sci. Prog. 104, 368504211004266 (2021).Article 
PubMed 

Google Scholar 
Klomjai, W., Katz, R. & Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58, 208–213 (2015).Article 
PubMed 

Google Scholar 
Ikeda, T., Kobayashi, S. & Morimoto, C. Gene expression microarray data from mouse CBS treated with rTMS for 30 days, mouse cerebrum and CBS treated with rTMS for 40 days. Data Brief. 17, 1078–1081 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Q. M. et al. Combining inhibitory and facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment improves motor function by modulating GABA in acute ischemic stroke patients. Restor. Neurol. Neurosci. 39, 419–434 (2021).CAS 
PubMed 

Google Scholar 
Cha, B. et al. Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study. Front. Neurol. 13, 813597 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Hong, Y. et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J. Neuroinflammation 17, 150 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoogendam, J. M., Ramakers, G. M. & Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 3, 95–118 (2010).Article 
PubMed 

Google Scholar 
Hsu, W. Y., Cheng, C. H., Liao, K. K., Lee, I. H. & Lin, Y. Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke 43, 1849–1857 (2012).Article 
PubMed 

Google Scholar 
Zhang, L. et al. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin. Rehabil. 31, 1137–1153 (2017).Article 
PubMed 

Google Scholar 
Harvey, R. L. et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke 49, 2138–2146 (2018).Article 
PubMed 

Google Scholar 
Kim, W. S., Kwon, B. S., Seo, H. G., Park, J. & Paik, N. J. Low-frequency repetitive transcranial magnetic stimulation over contralesional motor cortex for motor recovery in subacute ischemic stroke: a randomized sham-controlled trial. Neurorehabil. Neural Repair 34, 856–867 (2020).Article 
PubMed 

Google Scholar 
Ille, S. et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients — a randomized, double-blinded trial. Brain Stimul. 14, 780–787 (2021).Article 
PubMed 

Google Scholar 
Chiu, D. et al. Multifocal transcranial stimulation in chronic ischemic stroke: a phase 1/2a randomized trial. J. Stroke Cerebrovasc. Dis. 29, 104816 (2020).Article 
PubMed 

Google Scholar 
Wischnewski, M. & Schutter, D. J. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 8, 685–692 (2015).Article 
PubMed 

Google Scholar 
Vink, J. J. T. et al. Continuous theta-burst stimulation of the contralesional primary motor cortex for promotion of upper limb recovery after stroke: a randomized controlled trial. Stroke 54, 1962–1971 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Edwards, J. D. et al. Canadian platform for trials in noninvasive brain stimulation (CanStim) consensus recommendations for repetitive transcranial magnetic stimulation in upper extremity motor stroke rehabilitation trials. Neurorehabil. Neural Repair 35, 103–116 (2021).Article 
PubMed 

Google Scholar 
Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin. Neurophysiol. 132, 269–306 (2021).Article 
PubMed 

Google Scholar 
Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Singh, H. & Neil, L. A. Incidence of side effects in patients receiving repetitive transcranial magnetic stimulation (rTMS). Brain Stimul. 13, 1847–1848 (2020).Article 

Google Scholar 
Bikson, M. et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Schlaug, G., Renga, V. & Nair, D. Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65, 1571–1576 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Yamada, Y. & Sumiyoshi, T. Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Front. Hum. Neurosci. 15, 631838 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Longo, V. et al. Transcranial direct current stimulation enhances neuroplasticity and accelerates motor recovery in a stroke mouse model. Stroke 53, 1746–1758 (2022).Article 
CAS 
PubMed 

Google Scholar 
Elsner, B., Kwakkel, G., Kugler, J. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J. Neuroeng. Rehabil. 14, 95 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Van Hoornweder, S. et al. The effects of transcranial direct current stimulation on upper-limb function post-stroke: a meta-analysis of multiple-session studies. Clin. Neurophysiol. 132, 1897–1918 (2021).Article 
PubMed 

Google Scholar 
Edwards, D. J. et al. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. Restor. Neurol. Neurosci. 37, 167–180 (2019).PubMed 

Google Scholar 
Chhatbar, P. Y. et al. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship. Brain Stimul. 9, 16–26 (2016).Article 
PubMed 

Google Scholar 
Cordes, D. et al. Efficacy and safety of transcranial direct current stimulation to the ipsilesional motor cortex in subacute stroke (NETS): a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Reg. Health Europe 38, 100825 (2024).Article 

Google Scholar 
Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 5, CD009760 (2019).PubMed 

Google Scholar 
Cherney, L. R., Erickson, R. K. & Small, S. L. Epidural cortical stimulation as adjunctive treatment for non-fluent aphasia: preliminary findings. J. Neurol. Neurosurg. Psychiatry 81, 1014–1021 (2010).Article 
PubMed 

Google Scholar 
Adkins-Muir, D. L. & Jones, T. A. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol. Res. 25, 780–788 (2003).Article 
PubMed 

Google Scholar 
Plautz, E. J. et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res. 25, 801–810 (2003).Article 
PubMed 

Google Scholar 
Brown, J. A., Lutsep, H. L., Weinand, M. & Cramer, S. C. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58, 464–473 (2006).Article 
PubMed 

Google Scholar 
Levy, R. et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714 (2008).Article 
PubMed 

Google Scholar 
Levy, R. M. et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil. Neural Repair 30, 107–119 (2016).Article 
PubMed 

Google Scholar 
Powell, M. P. et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat. Med. 29, 689–699 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Kumar, P., Kathuria, P., Nair, P. & Prasad, K. Prediction of upper limb motor recovery after subacute ischemic stroke using diffusion tensor imaging: a systematic review and meta-analysis. J. Stroke 18, 50–59 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Stinear, C. M. et al. PREP2: a biomarker-based algorithm for predicting upper limb function after stroke. Ann. Clin. Transl. Neurol. 4, 811–820 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Macklin, R. The ethical problems with sham surgery in clinical research. N. Engl. J. Med. 341, 992–996 (1999).Article 
CAS 
PubMed 

Google Scholar 
Sterne, J. A., Egger, M. & Smith, G. D. Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323, 101–105 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar